Kinetika Slow-Released Pupuk Urea Terenkapsulasi Dalam Alginat

Authors

  • Reviana Inda Dwi Suyatmo Teknik Kimia Polimer, Politeknik Sekolah Tinggi Manajemen Industri Jakarta
  • Lukman Nulhakim Teknik Kimia, Universitas Jayabaya Makassar

DOI:

https://doi.org/10.35965/eco.v22i3.1830

Keywords:

Alginat, Enkapsulasi, Slow-Release, Urea

Abstract

Pupuk urea merupakan komoditas yang penting di sektor pertanian. Pupuk urea yang digunakan petani seringkali terbawa air sehingga pelepasannya tidak efisien. Oleh karena itu diperlukan proses enkapsulasi pupuk urea agar pelepasannya dapat dikontrol. Alginat dapat digunakan sebagai pelapis berbagai material. Tujuan penelitian adalh untuk mengetahui diameter rata-rata hasil enkapsulasi urea dengan alginate dan hasil uji pelepasan pupuk urea terenkapsulasi dalam alginat dalam air.  Pada penelitian ini dilakukan pembuatan urea terenkapsulasi dalam alginat serta permodelan kinetika slow-release urea terenkapsulasi. Enkapsulasi urea dalam alginat menghasilkan butiran dengan diameter rata-rata 3,01 mm.  Uji pelepasan urea dalam air masih terjadi setelah waktu 20 menit. Berdasarkan hasil permodelan diperoleh data nilai difusivitas efektif urea dalam butiran sebesar 5,2342 x 10-10 m2/s dan koefisien transfer massa urea dari permukaan butiran ke badan cairan sebesar 1,9684 x10-06 m/s.

Urea fertilizer is an important commodity in the agricultural sector. Urea used by farmers is often carried away by water so that its release is inefficient. Therefore, it is necessary to encapsulate urea so that its release can be controlled. Alginate can be used as a coating for various materials. In this study, the preparation of urea encapsulated in alginate and slow-release kinetics modeling was done. The encapsulated urea in alginate produced granules with an average diameter of 3.01 mm. The urea release test in water still occurred after 30 minutes. Based on the modeling, the effective diffusivity value of urea in granules was 5,2342 x 10-10 m2/s and the mass transfer coefficient of urea from the surface of the granules to the liquid was 1,9684 x 10-06 m/s.

Downloads

Download data is not yet available.

References

Bender, E. A. 2000. An Introduction to Mathematical Modeling. Dover Publication, New York.

Fernandez-Perez M., Garrido-Herrera F.J., Gonzalez-Pradas E., Villafranca-Sanchez M., Flores-Cespedes F. 2008. Lignin and ethylcellulose as polymers in controlled release formulations of urea. Journal of Applied Polymer Science, 108 (6): 3, 796-803.

Han X.Z., Chen S.S., Hu X.G. 2009. Controlled-release fertilizer encapsulated by starch/polyvinyl alcohol coating. Desalination, 240 (1-3), 21-26.

Kurniawan, Y. S., Imawan, A. C., Lukman, M. F., Trioyono, J., and Siswanta, D. 2017. Synthesis and Kinetic Study of the Urea Controlled Release Composite Material: Sodium Lignosulfonate from Isolation of Wood Sawdust-Sodium Alginate-Tapioca. Indonesian Journal of Chemistry, 18(1), 108-115.

Kaliyathan, A.V., Mathew, A., Rane, A.V., Kanny,K., Thomas,S. 2018. Fundamental Biomaterials : Polymer. Woodhead Publishing, Cambridge

Leong, J.Y.. 2016. Review Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems. Particuology, Volume 24, 44-60.

Ni B.L., Liu M.Z., Lu S.Y., Xie L.H., Wang Y.F. 2011. Environmentally friendly slow-release nitrogen fertilizer. Journal of agricultural and food chemistry, 59 (18): 10, 169-175.

Szekalska, M., Pucilowska, A., Szyman, E., 2016. Review Article Alginate: Current Use and Future Perspectives in Pharmaceutical and Biomedical Applications. International Journal of Polymer Science.

Zhong K., Lin Z.T., Zheng X.L., Jiang G.B., Fang Y.S., Mao X.Y., Liao Z.W. 2013. Starch derivative-based superabsorbent with integration of water-retaining and controlled-release fertilizers. Carbohydrate Polymers, 92 (2): 1, 367-376.

Downloads

Published

2022-12-30