Analisis Pengaruh Konsentrasi Reaktan Terhadap Kinetika Reaksi Kalium Persulfat Dan Kalium Iodida
DOI:
https://doi.org/10.35965/eco.v25i1.5496Keywords:
Kinetika Reaksi, Konsentrasi Reaktan, Iodine ClockAbstract
Reaksi iodine clock merupakan model yang ekonomis, aman, dan sederhana untuk mempelajari kinetika kimia di laboratorium dasar. Penelitian ini bertujuan menganalisis kinetika reaksi antara kalium persulfat (K2S2O8) dan kalium iodida (KI) dengan meninjau pengaruh konsentrasi reaktan. Eksperimen dilakukan dengan tiga variasi konsentrasi, menggunakan natrium tiosulfat sebagai zat penunda dan kanji sebagai indikator. Hasil menunjukkan peningkatan konsentrasi mempercepat laju reaksi, dengan orde reaksi 2,61 untuk K2S2O8 dan 2,17 untuk KI. Nilai orde reaksi tersebut menunjukkan mekanisme kompleks, dengan pembentukan iodin sebagai tahap penentu laju reaksi.
The “iodine clock” reaction is an economical, safe, and simple model for studying chemical kinetics in basic laboratories. This study aims to analyze the reaction kinetics between potassium persulfate (K2S2O8) and potassium iodide (KI) by examining the effect of reactant concentrations. Experiments were conducted using three different concentrations, with sodium thiosulfate as the delaying agent and starch as the indicator. The results showed that increasing concentrations accelerated the reaction rate, with reaction orders of 2.61 for K2S2O8 and 2.17 for KI. These values indicate a complex mechanism, with iodine formation as the rate-determining step.
Downloads
References
Ariani, F., & Busyairi Muhsin, L. (2023). Analisis Kadar Vitamin C Pada Buah Jeruk Nipis (Citrus aurantifolia Swing.) dan Jeruk Manis (Citrus sinensis) menggunakan Titrasi Iodometri Analysis of Vitamin C Contenten Lime (Citrus aurantifolia Swing.) and Sweet Orange (Citrus sinensis) Using Iodometric Titration. Biocity Journal of Pharmacy Bioscience and Clinical Community, 1(2), 73–80.
Bokhari, A., Yusup, S., Asif, S., Chuah, L. F., & Michelle, L. Z. Y. (2020). Chapter 3 - Process intensification for the production of canola-based methyl ester via ultrasonic batch reactor: optimization and kinetic study. In L. Singh, A. Yousuf, & D. M. Mahapatra (Eds.), Bioreactors (pp. 27–42). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-821264-6.00003-6
Burgess, A. E., & Davidson, J. C. (2012). A Kinetic–Equilibrium Study of a Triiodide Concentration Maximum Formed by the Persulfate–Iodide Reaction. Journal of Chemical Education, 89(6), 814–816. https://doi.org/10.1021/ed200055t
Chang, R. (2004). Kimia Dasar: Konsep-konsep Inti (Jilid 1, Edisi 3). Jakarta: Erlangga.
Chang, R. (2005). Kimia Dasar: Konsep-konsep inti edisi ketiga jilid 2.
Devianti, V. A., & Yulianti, C. H. (2018). Identifikasi dan penetapan kadar klorin dalam pembalut wanita yang beredar di Kelurahan Ketintang dengan metode titrasi iodimetri. Journal Pharmasci, 3(1), 9–12.
Hinton, C. L., & Macara, T. (1924). The application of the iodimetric method to the analysis of sugar products. Analyst, 49(574), 2–24. https://doi.org/10.1039/AN9244900002
Lambert, J. L., & Fina, G. T. (1984). Iodine clock reaction mechanisms. Journal of Chemical Education, 61(12), 1037.
Li, S. (2017). Chapter 1 - Introduction. In S. Li (Ed.), Reaction Engineering (pp. 1–23). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-12-410416-7.00001-X
Nandiyanto, A. B. D., Ragadhita, R., & Fiandini, M. (2024). How to Calculate and Determine Chemical Kinetics: Step-by-Step Interpretation of Experimental Data to Get Reaction Rate and Order. Indonesian Journal of Science and Technology, 9(3), 759–774.
Panzarasa, G. (2022). Iodine clocks: applications and untapped opportunities in materials science. Reaction Kinetics, Mechanisms and Catalysis, 135(3), 1349–1364.
Ramasami, P., Moothoosamy, D. N., & Goojha, R. (2010). Kinetics of the Reaction Between Peroxodisulphate(VI) and Iodide Ions. Asian Journal of Chemistry, 16(1), 85–88. https://asianpubs.org/index.php/ajchem/article/view/19554
Rawling, S. O., & Glassett, J. W. (1925). The Reaction between Potassium Persulphate and Potassium Iodide in Gelatin Sols. The Journal of Physical Chemistry, 29(4), 414–420. https://doi.org/10.1021/j150250a007
Salsabila, F. N., Widiarti, N., Windarti, W., Jayawardana, P. P., & Listyorini, P. (2023). Analysis of Quality and Metal Contamination in Consumption of Iodized Salt to Guarantee the Quality of Salt Circulating in Society. Indonesian Journal of Chemical Science, 12(2), 173–181.
Scheper, W. M., & Margerum, D. W. (1992). Non-metal redox kinetics: reactions of iodine and triiodide with thiosulfate via I2S2O32- and IS2O3- intermediates. Inorganic Chemistry, 31(26), 5466–5473. https://doi.org/10.1021/ic00052a023
Singh, M. (2011). Determination of the rate of reaction between potassium iodide and potassium peroxodisulphate with the econoburette: a green chemistry and microscale titrations. International Journal of Environmental and Analytical Chemistry, 91(3), 272–279.
Szabó, M., Beller, G., Kalmár, J., & Fábián, I. (2017). The Kinetics and Mechanism of Complex Redox Reactions in Aqueous Solution: The Tools of the Trade. In Advances in Inorganic Chemistry. https://doi.org/10.1016/bs.adioch.2017.02.004
Zhang, Y., Wang, J., Wang, Y., & Zhao, K. (2023). In-situ real-time monitoring of chemical kinetics by an automated micro-reaction device. Sensors and Actuators B: Chemical, 392, 134069. https://doi.org/https://doi.org/10.1016/j.snb.2023.134069
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Desi Budi Ariani, Silvia Silvia

This work is licensed under a Creative Commons Attribution 4.0 International License.










