Uji Kepadatan Mutlak Campuran Aspal AC-WC Menggunakan Material Batuan Clay Shale dari Desa Bonglo Kecamatan Bassesangtempe Utara Kabupaten Luwu
DOI:
https://doi.org/10.35965/eco.v25i2.6719Keywords:
Clay Shale, AC-WC, Kepadatan Mutlak, Filler, Marshall TestAbstract
Penelitian bertujuan untuk menganalisis pengaruh penggunaan batuan clay shale sebagai material substitusi filler pada campuran aspal AC-WC terhadap kepadatan mutlak dan karakteristik Marshall. Material diambil dari Desa Bonglo, Kecamatan Bassesangtempe Utra Kabupaten Luwu. Pengujian laboratorium dilakukan dengan dua metode pemadatan, yakni kepadatan normal (2 × 75 tumbukan) dan kepadatan mutlak (2 × 400 tumbukan), dengan variasi kadar aspal 5,0%–7,0%. Hasil menunjukkan bahwa nilai optimum kadar aspal berada pada 6,75% untuk kepadatan normal dan 5,75% untuk kepadatan mutlak, dengan karakteristik stabilitas, flow, VIM, VMA, VFB, dan Marshall Quotient yang sesuai spesifikasi.
This study aims to analyze the effect of using clay shale as a filler substitute in AC-WC asphalt mixtures on absolute density and Marshall Quotient characteristics. The material was taken from Bonglo Village, Basse Sangtempe District, Luwu Regency. Laboratory testing was conducted using two compaction methods: normal density (2×75 impacts) and absolute density (2×400 impacts), with asphalt content varying from 5.0% to 7.0%. The results showed that the optimum asphalt content was 6.75% for normal density and 5.75% for absolute density, with stability, flow, VIM, VMA, VFB, and Marshall Quotient characteristics meeting specifications.
Downloads
References
Alfrian, J., & Radjawane, L. (2021). Pengujian karakteristik campuran AC-BC yang menggunakan batu gunung Baba, Tana Toraja. Paulus Civil Engineering Journal, 3(1), 1–7.
https://doi.org/10.52722/pcej.v3i1.196
Al-Hadidy, A., Al-Kazzaz, Z., & Ali, A. (2020). Deterministic extensional viscosity and cracking index of polypropylene-modified-asphalt binder. Tikrit Journal of Engineering Sciences, 27(1), 25–29.
https://doi.org/10.25130/tjes.27.1.04
Amoussou, R., Ishimatsu, K., Oyama, N., & Shigeishi, M. (2015). Separation of aggregate from asphalt concrete using pulsed power technology. International Journal of Geomate.
https://doi.org/10.21660/2015.17.4325
Batara, I., & Mangontan, R. (2020). Pemanfaatan agregat Sungai Lamasi Kabupaten Luwu sebagai campuran lapisan aspal beton AC-WC. Paulus Civil Engineering Journal, 2(3), 171–179. https://doi.org/10.52722/pcej.v2i3.144
Bulgis, B., & Alkam, R. (2017). Pemanfaatan agregat alami dan agregat batu pecah sebagai material perkerasan pada campuran aspal beton. Potensi Jurnal Sipil Politeknik, 19(1).
https://doi.org/10.35313/potensi.v19i1.530
Debi, N., & Rachman, R. (2021). Penggunaan batu gunung Patangdo Kapa’ Kabupaten Tana Toraja dalam campuran AC-BC. Paulus Civil Engineering Journal, 3(1), 23–30. https://doi.org/10.52722/pcej.v3i1.199
Hussain, W., Abdulrasool, A., & Kadhim, Y. (2022). Using nanoclay hydrophilic bentonite as a filler to enhance the mechanical properties of asphalt. Istrazivanja I Projektovanja Za Privredu, 20(1), 300–304.
https://doi.org/10.5937/jaes20-35111
Lagos-Varas, M., Movilla-Quesada, D., Raposeiras, A., Castro-Fresno, D., Vega-Zamanillo, Á., & Cumian-Benavides, M. (2022). Use of hydrated ladle furnace slag as a filler substitute in asphalt mastics: Rheological analysis of filler/bitumen interaction. Construction and Building Materials, 332, 127370.
https://doi.org/10.1016/j.conbuildmat.2022.127370
Ma, T., Zhang, Y., Wang, H., Huang, X., & Zhao, Y. (2016). Influences by air voids on the low-temperature cracking property of dense-graded asphalt concrete based on micromechanical modeling. Advances in Materials Science and Engineering, 2016, 1–10.
https://doi.org/10.1155/2016/6942696
Mashaan, N., Karim, M., Khodary, F., Saboo, N., & Milad, A. (2021). Bituminous pavement reinforcement with fiber: A review. Civileng, 2(3), 599–611. https://doi.org/10.3390/civileng2030033
Mateos, A., Harvey, J., Paniagua, F., Paniagua, J., & Wu, R. (2019). Accelerated testing of full-scale thin bonded concrete overlay of asphalt. Transportation Research Record Journal of the Transportation Research Board, 2673(2), 404–414. https://doi.org/10.1177/0361198119825645
Pagewang, D., & Rachman, R. (2020). Pengaruh penggunaan limbah kantong plastik sebagai bahan tambah dalam campuran AC–Base. Paulus Civil Engineering Journal, 2(2), 97–102. https://doi.org/10.52722/pcej.v2i2.131
Pampanglangi, M., & Kamba, C. (2022). Karakteristik batu gunung Posi’Padang Balla Kabupaten Mamasa yang menggunakan campuran Laston AC-WC. Paulus Civil Engineering Journal, 4(3), 479–487. https://doi.org/10.52722/pcej.v4i3.525
Pude, R., & Mangontan, R. (2023). Pemanfaatan batu Sungai Pucak dengan filler abu sekam padi untuk lapis AC-BC. Paulus Civil Engineering Journal, 5(1), 1–7. https://doi.org/10.52722/pcej.v5i1.584
Putra, A., & Sholichin, I. (2021). Perbandingan karakteristik aspal Pertamina dengan aspal Shell sebagai campuran aspal beton. Kern Jurnal Ilmiah Teknik Sipil, 7(2), 83–92. https://doi.org/10.33005/kern.v7i2.53
Ro’son, N., & Rachman, R. (2023). Pemanfaatan batu Sungai Pappa Kecamatan Polong Bangkeng Utara, Kabupaten Takalar dalam campuran AC-WC. Paulus Civil Engineering Journal, 5(1), 40–49.
https://doi.org/10.52722/pcej.v5i1.589
Sandabunga, A., Ali, N., & Rachman, R. (2021). Karakteristik campuran SMA kasar menggunakan batu Sungai Sa’dan Kecamatan Sesean Toraja Utara. Paulus Civil Engineering Journal, 2(4), 282–288. https://doi.org/10.52722/pcej.v2i4.186
Sarsam, S. (2021). Impact of compaction mode on strength properties of sustainable asphalt concrete. Journal of Architectural Environment & Structural Engineering Research, 4(4), 3–9. https://doi.org/10.30564/jaeser.v4i4.3598
Sarsam, S. (2022). Assessing the tensile properties of asphalt concrete. Brilliant Engineering, 3(4), 1–6.
https://doi.org/10.36937/ben.2022.4707
Sarsam, S. (2023). Influence of constant strain levels on the viscoelastic properties of asphalt concrete. IJE, 20(54), 1–7. https://doi.org/10.54905/disssi/v20i54/e31ije1666
Tu, B., Yang, X., Xu, S., Liang, X., Liu, C., Jiang, J., … & Tu, L. (2023). Exploring the utilization of PHC pile waste concrete as filler in asphalt mastics. Materials, 16(22), 7158. https://doi.org/10.3390/ma16227158
Tu, B., Yang, X., Xu, S., Zhao, Z., Zhou, Y., Jiang, J., … & Tu, L. (2023). Road performance evaluation of prestressed high-strength concrete pile waste powder as alternative filler in asphalt concrete. Frontiers in Energy Research, 11. https://doi.org/10.3389/fenrg.2023.1314242
Wang, H., Yang, J., Liao, H., & Chen, X. (2016). Electrical and mechanical properties of asphalt concrete containing conductive fibers and fillers. Construction and Building Materials, 122, 184–190.
https://doi.org/10.1016/j.conbuildmat.2016.06.063
Wang, J., Huo, T., Wang, D., & Zhang, P. (2024). Study on basic pavement performance of high-elasticity asphalt concrete. Polymers, 16(15), 2156. https://doi.org/10.3390/polym16152156
Wang, Z., Hao, J., Yang, J., Cao, Y., Li, X., & Liu, S. (2019). Experimental study on hydraulic fracturing of high asphalt concrete core rock-fill dam. Applied Sciences, 9(11), 2285.
https://doi.org/10.3390/app9112285
Wendani, N., & Selintung, M. (2020). Studi penggunaan agregat Sungai Bittuang sebagai bahan campuran AC-WC. Paulus Civil Engineering Journal, 2(2), 138–144. https://doi.org/10.52722/pcej.v2i2.126
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Afgan Nugraha, Jusmidah Jusmidah, Muhammad Fikri, Nurhidayah4 Nurhidayah4

This work is licensed under a Creative Commons Attribution 4.0 International License.










