Implikasi Urban Sprawl Terhadap Tingkat Kerentanan Banjir di Kecamatan Biringkanaya Kota Makassar
DOI:
https://doi.org/10.35965/ursj.v7i2.6059Keywords:
Urban Sprawl, Kerentanan Banjir, Pengendalian BanjirAbstract
Fenomena urban sprawl sebagai akibat dari urbanisasi yang tidak terkendali telah menjadi tantangan serius dalam perencanaan kota, terutama dalam kaitannya dengan meningkatnya risiko bencana banjir. Penelitian ini bertujuan untuk menganalisis pengaruh urban sprawl terhadap tingkat kerentanan banjir di Kecamatan Biringkanaya, Kota Makassar, serta merumuskan upaya pengendalian banjir yang dapat dilakukan. Metode yang digunakan adalah pendekatan kuantitatif dengan analisis spasial, skoring, overlay union, dan uji korelasi Pearson. Variabel urban sprawl meliputi kepadatan penduduk, kepadatan bangunan, jarak ke pusat kota, buffer jaringan jalan, dan pola pembangunan leapfrog. Sedangkan variabel kerentanan banjir meliputi curah hujan, jenis tanah, penggunaan lahan, dan kemiringan lereng. Hasil penelitian menunjukkan adanya hubungan signifikan antara tingkat urban sprawl dengan tingkat kerentanan banjir. Semakin tinggi tingkat urban sprawl di suatu wilayah, semakin tinggi pula tingkat kerentanannya terhadap banjir. Penelitian ini memberikan rekomendasi kebijakan pengendalian penggunaan lahan dan perencanaan ruang yang lebih berkelanjutan untuk mengurangi risiko banjir di wilayah urban fringe.
Urban sprawl, as a consequence of uncontrolled urbanization, has become a significant challenge in urban planning, especially regarding the increasing risk of flooding disasters. This study aims to analyze the impact of urban sprawl on flood vulnerability in Biringkanaya Subdistrict, Makassar City, and identify the control measures that can be implemented. A quantitative approach was used with spatial analysis, scoring, overlay union, and Pearson correlation testing. The urban sprawl variables include population density, building density, distance to the city center, road network buffer, and leapfrog development patterns. Meanwhile, flood vulnerability variables include rainfall, soil type, land use, and slope. The findings show a significant relationship between the level of urban sprawl and flood vulnerability. The higher the urban sprawl in an area, the greater the flood vulnerability. This study recommends policies on land use control and more sustainable spatial planning to reduce flood risks in urban fringe areas.
Downloads
References
Afriyanie, D., Julian, M. M., & Nugraha, H. (2022). Urban Flood Resilience through Spatial Plan in Bandung City, Indonesia.IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/986/1/012052
Ahmed, M., Mirza, M. A., Raza, S., Ahmad, H., Khan, W. U., & Han, Z. (2023). Vehicular Communication Network Enabled CAV Data Offloading: A Review.IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/tits.2023.3263643
Arief, I., & Thahir, H. (2020).Adaptive reuse to concept of land use planning and design. Case study: Independent integrated city in Morowali, Central Sulawesi. https://doi.org/10.1051/MATECCONF/202033107004
Avand, M. T., Moradi, H. R., & lasboyee, M. R. (2022). Predicting temporal and spatial variability in flood vulnerability and risk of rural communities at the watershed scale.Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2022.116261
Burke, R., Xing, J., Ford, A., & Dawson, R. (2022, November 1). A geospatial modelling framework to assess flood risk under future scenarios of urban form (vision paper).Proceedings of the 30th International Conference on Advances in Geographic Information Systems. https://doi.org/10.1145/3557915.3560945
Cao, C., Su, M., Duan, S., Dai, M., Li, J., & Li, Y. (2022). QoS-Aware Joint Task Scheduling and Resource Allocation in Vehicular Edge Computing.Sensors. https://doi.org/10.3390/s22239340
Chen, N., & Liu, W. (2022). Urban Disaster Risk Prevention and Mitigation Strategies from the Perspective of Climate Resilience.Wireless Communications and Mobile Computing. https://doi.org/10.1155/2022/4907084
Cooperative Transmission Scheduling and Computation Offloading With Collaboration of Fog and Cloud for Industrial IoT Applications. (2023).IEEE Internet of Things Journal. https://doi.org/10.1109/jiot.2022.3150070
Dawson, D., Vercruysse, K., & Wright, N. (2020). A spatial framework to explore needs and opportunities for interoperable urban flood management.Philosophical Transactions of the Royal Society A. https://doi.org/10.1098/RSTA.2019.0205
Egidi, G., Cividino, S., Vinci, S., Sateriano, A., & Salvia, R. (2020). Towards Local Forms of Sprawl: A Brief Reflection on Mediterranean Urbanization.Sustainability. https://doi.org/10.3390/SU12020582
Energy Consumption and QoS-Aware Co-Offloading for Vehicular Edge Computing. (2023).IEEE Internet of Things Journal. https://doi.org/10.1109/jiot.2022.3221966
Energy-Efficient Cooperative Offloading for Edge Computing-Enabled Vehicular Networks. (2022).IEEE Transactions on Wireless Communications. https://doi.org/10.1109/twc.2022.3186590
Esmaiel, A., Abdrabo, K. I., Saber, M., Sliuzas, R., Atun, F., Kantoush, S. A., & Sumi, T. (2022). Integration of flood risk assessment and spatial planning for disaster management in Egypt.Progress in Disaster Science. https://doi.org/10.1016/j.pdisas.2022.100245
Feng, B., Zhang, Y., & Bourke, R. (2021). Urbanization impacts on flood risks based on urban growth data and coupled flood models.Natural Hazards. https://doi.org/10.1007/S11069-020-04480-0
Glaeser, E. L., Glaeser, E. L., Glaeser, E. L., Kahn, M. E., & Kahn, M. E. (2001). Decentralized Employment and the Transformation of the American City.Social Science Research Network. https://doi.org/10.2139/SSRN.263257
Gupte, J., Clark, L., Ghosh, D., Babu, S., Mehra, P., Raza, A. A., Sharma, V., Kumar, Y., Mishra, A., Shrivastava, K., Kulkarni, P., Fort, R., Escobar Espinoza, Á. A., Chuquipiondo, A., Rathore, J. S., & Pillai, D. (2022).Embedding Community Voice into Smart City Spatial Planning.
Hazra, A., Donta, P. K., Amgoth, T., & Dustdar, S. (2023). Cooperative Transmission Scheduling and Computation Offloading With Collaboration of Fog and Cloud for Industrial IoT Applications.IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2022.3150070
Huang, J., Yang, Y., Yang, Y., Fang, Z., & Wang, H. (2022). Risk assessment of urban rainstorm flood disaster based on land use/land cover simulation.Hydrological Processes. https://doi.org/10.1002/hyp.14771
Joint Communication, Computation, and Control for Computational Task Offloading in Vehicle-Assisted Multi-Access Edge Computing. (2022).IEEE Access. https://doi.org/10.1109/access.2022.3220251
Li, X., Hou, J., Pan, Z., Li, B., Jing, J., & Shen, J. (2022). Responses of urban flood processes to local land use using a high-resolution numeric model.Urban Climate. https://doi.org/10.1016/j.uclim.2022.101244
Liu, D., Zheng, X., & Zhang, L. (2021). Simulation of Spatiotemporal Relationship between COVID-19 Propagation and Regional Economic Development in China.Land. https://doi.org/10.3390/LAND10060599
Liu, J., Xiong, J., Chen, Y., Sun, H. K., Zhao, X., Tu, F., & Gu, Y. (2023). An integrated model chain for future flood risk prediction under land-use changes.Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2023.118125
Lv, W., Yang, P., Zheng, T., Yi, B., Ding, Y., Wang, Q., & Deng, M. (2023). Energy Consumption and QoS-Aware Co-Offloading for Vehicular Edge Computing.IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2022.3221966
Marciano, C. R. (2023).Participatory Design and Public Policies: The Case of the General Regional Waste Plan in Valle d’Aosta (Italy). https://doi.org/10.3390/waste1020028
Mei, C., Liu, J., Wang, H., Li, Z., Yang, Z., Shao, W., Xiangyi, D., Baisha, W., Yu, Y., & Yan, D. (2020). Urban flood inundation and damage assessment based on numerical simulations of design rainstorms with different characteristics.Science China-Technological Sciences. https://doi.org/10.1007/S11431-019-1523-2
Nowogonski, I. (2021). Runoff Volume Reduction Using Green Infrastructure.Land. https://doi.org/10.3390/LAND10030297
Online Distributed Optimization for Energy-Efficient Computation Offloading in Air-Ground Integrated Networks. (2023).IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/tvt.2022.3224765
Pagett, R. (2021).Principles Regarding Urbanisation, Disaster Risks and Resilience. https://doi.org/10.1007/978-3-030-61278-8_3
Pappalardo, V., & La Rosa, D. (2023). Spatial Analysis of Flood Exposure and Vulnerability for Planning More Equal Mitigation Actions.Sustainability. https://doi.org/10.3390/su15107957
Romanchyshyna, I. (2022).The role of risk transfer and spatial planning for enhancing the flood resilience of cities. https://doi.org/10.4337/9781800379534.00019
Sinha, M. K., Baghel, T., Baier, K., Verma, M. K., Jha, R., & Azzam, R. (2019).Impact of Urbanization on Surface Runoff Characteristics at Catchment Scale. https://doi.org/10.1007/978-981-13-2044-6_3
Truu, M., Annus, I., Roosimägi, J., Kändler, N., Vassiljev, A., & Kaur, K. (2021). Integrated Decision Support System for Pluvial Flood-Resilient Spatial Planning in Urban Areas.Water. https://doi.org/10.3390/W13233340
Vermeiren, K. (2022). Modelling urban sprawl and assessing its costs in the planning process: A case study in Flanders, Belgium.Land Use Policy. https://doi.org/10.1016/j.landusepol.2021.105902
Wang, M., Fu, X.-J., Zhang, D., Chen, F., Liu, M., Zhou, S., Su, J., & Tan, S. K. (2023). Assessing urban flooding risk in response to climate change and urbanization based on shared socio-economic pathways.Science of The Total Environment. https://doi.org/10.1016/j.scitotenv.2023.163470
Wang, Y., Li, C., Liu, M., Cui, Q., Wang, H., Lv, J., Li, B., Xiong, Z., & Hu, Y. (2022). Spatial characteristics and driving factors of urban flooding in Chinese megacities.Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2022.128464
Wijayawardana, N., Abenayake, C., Jayasinghe, A., & Dias, N. (2023). An Urban Density-Based Runoff Simulation Framework to Envisage Flood Resilience of Cities.Urban Science. https://doi.org/10.3390/urbansci7010017
Xu, C., Fu, H., Yang, J., & Wang, L. (2022). Assessment of the Relationship between Land Use and Flood Risk Based on a Coupled Hydrological–Hydraulic Model: A Case Study of Zhaojue River Basin in Southwestern China.Land. https://doi.org/10.3390/land11081182
Zanoletti, A., & Bontempi, E. (2023). Editorial: Urban runoff of pollutants and their treatment.Frontiers in Environmental Chemistry. https://doi.org/10.3389/fenvc.2023.1151859
Zhang, H., Feng, L., Liu, X., Long, K., & Karagiannidis, G. K. (2023). User Scheduling and Task Offloading in Multi-Tier Computing 6G Vehicular Network.IEEE Journal on Selected Areas in Communications. https://doi.org/10.1109/JSAC.2022.3227097
Zhang, H., Liu, X., Xie, Y., Gou, Q., Li, R., Qiu, Y., Hu, Y., & Huang, B. (2022). Assessment and Improvement of Urban Resilience to Flooding at a Subdistrict Level Using Multi-Source Geospatial Data: Jakarta as a Case Study.Remote Sensing. https://doi.org/10.3390/rs14092010
Zhu, H., Yao, J., Meng, J., Cui, C., Wang, M., & Yang, R. (2023). A Method to Construct an Environmental Vulnerability Model Based on Multi-Source Data to Evaluate the Hazard of Short-Term Precipitation-Induced Flooding.Remote Sensing. https://doi.org/10.3390/rs15061609
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Dinanti Umar, Syafri Syafri, Rudi Latief

This work is licensed under a Creative Commons Attribution 4.0 International License.







